Accelerated pseudogenization on the neo-X chromosome in Drosophila miranda

نویسندگان

  • Masafumi Nozawa
  • Kanako Onizuka
  • Mai Fujimi
  • Kazuho Ikeo
  • Takashi Gojobori
چکیده

Y chromosomes often degenerate via the accumulation of pseudogenes and transposable elements. By contrast, little is known about X-chromosome degeneration. Here we compare the pseudogenization process between genes on the neo-sex chromosomes in Drosophila miranda and their autosomal orthologues in closely related species. The pseudogenization rate on the neo-X is much lower than the rate on the neo-Y, but appears to be higher than the rate on the orthologous autosome in D. pseudoobscura. Genes under less functional constraint and/or genes with male-biased expression tend to become pseudogenes on the neo-X, indicating the accumulation of slightly deleterious mutations and the feminization of the neo-X. We also find a weak trend that the genes with female-benefit/male-detriment effects identified in D. melanogaster are pseudogenized on the neo-X, implying the masculinization of the neo-X. These observations suggest that both X and Y chromosomes can degenerate due to a complex suite of evolutionary forces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of amino-acid sequences and codon usage on the Drosophila miranda neo-sex chromosomes.

We have studied patterns of DNA sequence variation and evolution for 22 genes located on the neo-X and neo-Y chromosomes of Drosophila miranda. As found previously, nucleotide site diversity is greatly reduced on the neo-Y chromosome, with a severely distorted frequency spectrum. There is also an accelerated rate of amino-acid sequence evolution on the neo-Y chromosome. Comparisons of nonsynony...

متن کامل

The Amylase gene cluster on the evolving sex chromosomes of Drosophila miranda.

On the basis of chromosomal homology, the Amylase gene cluster in Drosophila miranda must be located on the secondary sex chromosome pair, neo-X (X2) and neo-Y, but is autosomally inherited in all other Drosophila species. Genetic evidence indicates no active amylase on the neo-Y chromosome and the X2-chromosomal locus already shows dosage compensation. Several lines of evidence strongly sugges...

متن کامل

Expression Profile of a Degenerating Neo-Y Chromosome in Drosophila

BACKGROUND Gene-poor, degenerate Y chromosomes have evolved repeatedly from ordinary autosomes, but little is known about the processes that silence most genes on an evolving Y. RESULTS Here, I quantify relative expression levels of 58 gene pairs on the recently formed neo-sex chromosomes of Drosophila miranda, in order to test competing models of gene inactivation on its newly evolving Y chr...

متن کامل

Reduced levels of microsatellite variability on the neo-Y chromosome of Drosophila miranda

BACKGROUND In many species, sex is determined by a system involving X and Y chromosomes, the latter having lost much of their genetic activity. Sex chromosomes have evolved independently many times, and several different mechanisms responsible for the degeneration of the Y chromosome have been proposed. Here, we have taken advantage of the secondary sex chromosome pair in Drosophila miranda to ...

متن کامل

Sex-specific adaptation drives early sex chromosome evolution in Drosophila.

Most species' sex chromosomes are derived from ancient autosomes and show few signatures of their origins. We studied the sex chromosomes of Drosophila miranda, where a neo-Y chromosome originated only approximately 1 million years ago. Whole-genome and transcriptome analysis reveals massive degeneration of the neo-Y, that male-beneficial genes on the neo-Y are more likely to undergo accelerate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016